



# Comparative analysis of the complete genome of an *Acinetobacter calcoaceticus* strain adapted to a phenol-polluted environment

Yuhua Zhan<sup>1</sup>, Yongliang Yan<sup>1</sup>, Wei Zhang, Ming Chen, Wei Lu, Shuzhen Ping, Min Lin<sup>\*</sup>

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Beijing 100081, China

Received 5 July 2011; accepted 19 September 2011

## Abstract

The complete genome sequence of *Acinetobacter calcoaceticus* PHEA-2, a non-pathogenic phenol-degrading bacterium previously isolated from industrial wastewater of an oil refinery in China, has been established. This is the first sequence of an *A. calcoaceticus* strain. We report here a comparative genomic analysis of PHEA-2 with two other *Acinetobacter* species having different lifestyles, *Acinetobacter baumannii* AYE, a pathogenic human-adapted strain, and *Acinetobacter baylyi* ADP1, a soil-living strain. For a long time, *A. calcoaceticus* could not be easily distinguished from *A. baumannii* strains. Indeed, whole-genome comparison revealed high synteny between *A. calcoaceticus* and *A. baumannii* genomes, but most genes for multiple drug resistance as well as those presumably involved in pathogenicity were not present in the PHEA-2 genome and phylogenetic analysis showed that *A. calcoaceticus* differed from *A. baumannii* antibiotic-susceptible strains. It also revealed that many genes associated with environmental adaptation were acquired by horizontal gene transfer, including an 8-kb phenol degradation gene cluster. A relatively higher proportion of transport-related proteins were found in PHEA-2 than in ADP1 and AYE. Overall, these findings highlight the remarkable capacity of *A. calcoaceticus* PHEA-2 to effectively adapt to a phenol-polluted wastewater environment.

© 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

**Keywords:** *Acinetobacter calcoaceticus*; Phenol degradation; Comparative genomics

## 1. Introduction

The *Acinetobacter* genus, which belongs to the gamma subgroup of *Proteobacteria*, has received particular attention because of its metabolic versatility and, in the case of clinical isolates, of its multidrug resistance (MDR) pattern (Juni, 1978; Munoz-Price and Weinstein, 2008; Towner, 2009). *Acinetobacter* have the ability to take up extracellular DNA from the environment, a mechanism probably used for the acquisition of new functions by horizontal gene transfer (HGT) (Barbe et al.,

2004; Palmen et al., 1993). Strain PHEA-2, which was isolated from phenol polluted wastewater in China for its ability to degrade phenol, has been identified as an *Acinetobacter calcoaceticus* on the basis of molecular methods (Xu et al., 2003; Zhan et al., 2008). Physiological properties of strain PHEA-2 rendered genome analysis of this strain of particular interest (Zhan et al., 2009). Firstly, the taxonomic status of *A. calcoaceticus* was long controversial, since it could not be easily distinguished using classical phenotypic tests from *Acinetobacter baumannii* (Towner, 2009). Both species are often quoted as part of the *A. calcoaceticus*–*A. baumannii* complex (Gerner-Smidt et al., 1991; Towner, 2009). *A. baumannii* appears to be a significant pathogen in hospital environments, as it is a major cause of nosocomial infection due to its MDR pattern (Diancourt et al., 2010; Munoz-Price and Weinstein, 2008; van Dessel et al., 2004). Most MDR clinical isolates belong to the *A. baumannii* species, while *A. calcoaceticus* isolated from

\* Corresponding author. Tel.: +86 10 82106145; fax: +86 10 82106142.

E-mail addresses: [spring2192003@yahoo.com.cn](mailto:spring2192003@yahoo.com.cn) (Y. Zhan), [yongliangyan@yahoo.com.cn](mailto:yongliangyan@yahoo.com.cn) (Y. Yan), [zhwmm@caas.net.cn](mailto:zhwmm@caas.net.cn) (W. Zhang), [chenmingbio@hotmail.com](mailto:chenmingbio@hotmail.com) (M. Chen), [Luwei0317@vip.sina.com](mailto:Luwei0317@vip.sina.com) (W. Lu), [Pingshen@yahoo.com.cn](mailto:Pingshen@yahoo.com.cn) (S. Ping), [linmin57@vip.163.com](mailto:linmin57@vip.163.com) (M. Lin).

<sup>1</sup> These authors contributed equally to this work.

environmental samples are considered non-pathogenic and “sensitive” strains because they do not show extensive antibiotic resistance (Towner, 2009). In that respect, strain PHEA-2 is sensitive to most antibiotics. Secondly, *Acinetobacter* sp., such as the extensively studied soil bacterium *Acinetobacter baylyi* ADP1 (formerly known as *Acinetobacter* sp. ADP1), displayed the ability to degrade a wide variety of organic compounds (Barbe et al., 2004; Young et al., 2005), but did not show the ability to use phenol. Thus, the 8-kb DNA cluster that carries the genetic information responsible for phenol degradation in PHEA-2 (Xu et al., 2003) was probably acquired by HGT.

The complete genome sequencing of *A. calcoaceticus* PHEA-2 was undertaken because of the importance of this bacterium for bioremediation of phenol-polluted wastes (Zhan et al., 2011). To our knowledge, this is the first strain of *A. calcoaceticus* whose genome has been sequenced. We report here a comparison with the genome of the human pathogen *A. baumannii* AYE and with that of the soil-living bacterium *A. baylyi* ADP1. This permitted identification of traits specific to PHEA-2 or common among the three species, and of catabolic islands in the PHEA-2 genome determinant for its survival in hostile environments.

## 2. Materials and methods

### 2.1. Media and growth conditions used

The *Acinetobacter* strain was grown in Luria-Bertani (LB) medium (bacto-tryptone 10 g, bacto-yeast extract 5 g, NaCl 10 g) or mineral salt (MS) medium (NaNO<sub>3</sub> 0.5 g, K<sub>2</sub>HPO<sub>4</sub> 0.65 g, KH<sub>2</sub>PO<sub>4</sub> 0.17 g, MgSO<sub>4</sub> 0.10 g) with phenol or benzoate at 30 °C. When necessary, ampicillin (Amp) (20 µg/ml) was added to the media. Genomic DNA from *A. calcoaceticus* PHEA-2 was extracted from cells grown overnight at 30 °C in LB liquid cultures using the TIANamp Bacterial DNA kit (Tiangen). The complete genome sequence of *A. calcoaceticus* PHEA-2 had been determined by the Beijing Genomics Institute (BGI) using Solexa sequencing following standard Solexa protocols (Illumina, USA).

### 2.2. Genomic comparison

Sequence data for comparative analyses were obtained from the NCBI genbank (<ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria>). Genomic comparisons were carried out by bidirectional BLASTP comparisons of whole-genome protein databases. Homology searches were conducted both at the nucleotide and amino acid sequence levels using BLAST with e-value  $\leq 1 \times 10^{-5}$ . Sequence families were built according to the BLASTP results, using Treebest (<http://treessoft.sourceforge.net/viewvc/treessoft/trunk/treebest/>). Orthologous relations were supported by synteny detection using MUMmer (<http://mummer.sourceforge.net/manual/>).

### 2.3. 16S rRNA gene phylogenetic analysis

16S rRNA sequences of *Acinetobacter* strains were from the NCBI database (<http://www.ncbi.nlm.nih.gov/nuccore/>).

Nucleotide sequence alignment was carried out by using ClustalW. The multiple alignments were then manually checked and trimmed using BioEdit. The dataset of the 27 concatenated sequences was fed to Molecular Evolutionary Genetics Analysis (MEGA) (Tamura et al., 2007) software to construct the maximum likelihood (ML) tree using the Neighbor-Joining (NJ) method. The distances between DNA sequences used for building the NJ tree were computed using Jukes–Cantor corrections. The NJ method produced a unique final tree based on the assumption of minimum evolution with the correct tree topology. Bootstrap values for the consensus tree were calculated by using 1000 replications.

## 3. Results and discussion

### 3.1. General features

*A. calcoaceticus* PHEA-2 has a single circular chromosome, 3,862,530 base pairs (bp) in length with an average G + C content of 38.8% (Fig. 1, Table 1) (Zhan et al., 2011). Comparison of the *A. calcoaceticus* PHEA-2 genome with those of *A. baumannii* AYE and *A. baylyi* ADP1 (Table 1, Fig. S1, Supplementary material) revealed the highest synteny, as well as the highest percentage of identity for protein-deduced sequences, between PHEA-2 and AYE genomes compared to ADP1. This reflects the fact that, for a long time, *A. calcoaceticus* isolates could not be differentiated from *A. baumannii* (Diancourt et al., 2010; Dolzani et al., 1995; Gerner-Smidt et al., 1991; van Dessel et al., 2004). PHEA-2 and AYE have genomes of similar size and both contain a similar number of putative coding sequences (CDS), 3599 in PHEA-2 versus 3590 in AYE. Strain ADP1 has the smallest chromosome. The different degree of synteny of the three strains observed led us to determine how many genes are homologous between the three species (Fig. 2). The three strains had in common 3029 CDS; a high level of conservation was observed for the genes devoted to nucleotide transport, energy production and conversion, lipid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism. Compared to AYE and ADP1, 235 putative accessory genes were unique to PHEA-2 (Table S1), including a set of genes for the phenol catabolic pathway and a large percentage of genes for hypothetical proteins. A total of 216 genes are unique to AYE, including those for multidrug resistance, and 291 genes are unique to strain ADP1. It is thus tempting to conclude, as noted previously (Metzgar et al., 2004; Vallenet et al., 2008), that the genes reflect the lifestyle in distinct ecological niches: wastewater (PHEA-2), soil (ADP1) and hospital environments (AYE).

A 16S rRNA-based neighbor-joining tree clearly established that *A. calcoaceticus* and *A. baumannii* strains were in different phylogenetic clusters (Fig. S2). This tree included *A. baumannii* antibiotic-susceptible strains, such as strain SDF and strain ATCC17978 (Adams et al., 2008). This supports the hypothesis that *A. baumannii* antibiotic-susceptible strains and *A. calcoaceticus* have different evolutionary origins.

The genome of PHEA-2, similarly to what was observed in *A. baumannii* and *A. baylyi* species, carried DNA regions with

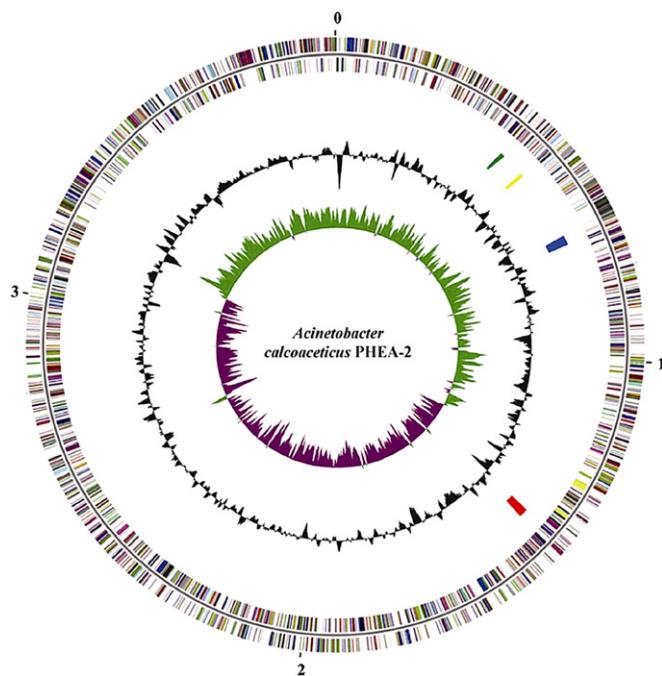



Fig. 1. Circular representation of the chromosome of *A. calcoaceticus* PHEA-2. The outer scale is marked in Mb. From outside to inside: Circles 1 and 2: predicted forward and reverse-strand gene products, coded according to the COG classification with color code for functions: salmon, translation, ribosomal structure and biogenesis; light blue, transcription; cyan, DNA replication, recombination and repair; turquoise, cell division; deep pink, posttranslational modification, protein turnover and chaperones; olive drab, cell envelope biogenesis; purple, cell motility and secretion; forest green, inorganic ion transport and metabolism; magenta, signal transduction; red, energy production; sienna, carbohydrate transport and metabolism; yellow, amino acid transport; orange, nucleotide transport and metabolism; gold, co-enzyme transport and metabolism; dark blue, lipid metabolism; blue, secondary metabolites, transport and catabolism; gray, general function prediction only; black, function unclassified or unknown. Circle 3: genomic catabolic islands: green, Island I (BDGL000387-000401, 18 kb), vanillate and caffeate clusters; yellow, Island II (BDGL000460-000477, 17 kb), benzoate and phenol clusters; blue, Island III (BDGL000681-000741, 65 kb), 4-hydroxybenzoate and phenylacetate clusters; red, Island IV (BDGL001322-001371, 52 kb), catechol, protocatechuate and quinate clusters. Circles 4 and 5: G + C content and GC skew (G – C/G + C), respectively, window size 10 kb. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

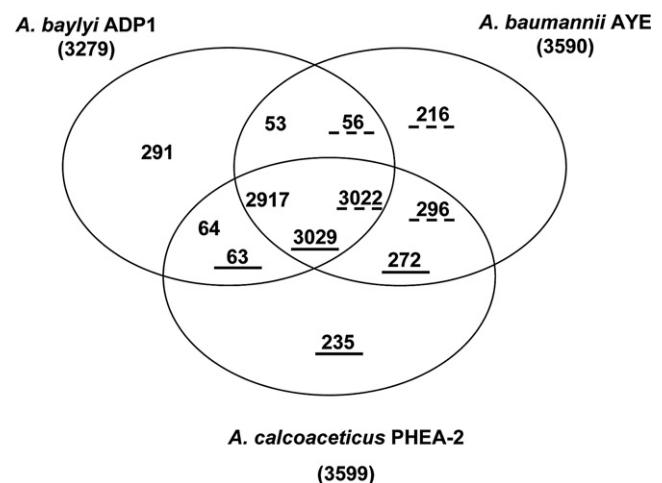



Fig. 2. Overlapping gene content comparisons of the *A. calcoaceticus* PHEA-2, *A. baumannii* AYE and *A. baylyi* ADP1 genomes. Putative orthologs are defined as genes showing at least 30% identity and 70% coverage. Not underlined, *A. baylyi* ADP1; straight underlining, *A. calcoaceticus* PHEA-2; dotted underlining, *A. baumannii* AYE.

much higher G + C content than the rest of the genome. It represented 5.5% of all genes in PHEA-2 (Fig. 1). Most genes associated with these putative genomic islands in PHEA-2 encode proteins that may be related to better adaptation to wastewater environment, suggesting acquisition by HGT. The PHEA-2 genome carries catabolic islands for degradation of aromatic compounds, as also reported previously in *A. baylyi* ADP1 and also found in AYE. Four of these regions with G + C content of 47.4% (Island I), 50.8% (Island II), 51.4% (Island III) and 49.1% (Island IV) are localized in Fig. 1. Degradation of benzoate is carried by island II which also contains the phenol degradation gene cluster (Fig. 3, Fig. S3). Two DNA regions for iron acquisition also displayed enriched in G + C content of 49.6% and 50.3%.

Bacterial competence for natural genetic transformation involves uptake of naked exogenous DNA from the environment and its integration into the genome, and requires the presence of a considerable number of gene products (Barbe et al., 2004; Friedrich et al., 2001; Soledad Ramirez et al., 2010). Indeed, *Acinetobacter* bacteria are known to be naturally competent. This trait has been extensively studied in *A. baylyi* ADP1 (Metzgar et al., 2004). The PHEA-2 genome has 30 natural competence-related genes (Table 2) including *pilBC*, *comEA* and *comEC* that had been previously described in *Pseudomonas putida* and other *Acinetobacter* species. ComeEA is a transmembrane protein which binds external DNA and delivers it to the ComEC transporter (Smith et al., 2007). The 30 genes are organized into five clusters with high G + C contents of 47.8%, 50.1%, 51.3%, 51% and 51.9%, respectively.

### 3.2. Lack of pathogenicity and MDR determinants

Consistent with its sensitivity to most antibiotics, PHEA-2 lacks most of the MDR such as tetracyclines, chloramphenicol and other pathogenicity determinants found in *A. baumannii*

Table 1  
Features of the three *Acinetobacter* genomes.

|                                 | <i>A. calcoaceticus</i><br>PHEA-2 | <i>A. baylyi</i><br>ADP <sup>a</sup> | <i>A. baumannii</i><br>AYE <sup>a</sup> |
|---------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|
| Size (Mb)                       | 3.86                              | 3.60                                 | 3.94                                    |
| Plasmids                        | None                              | None                                 | 4                                       |
| GC content (%)                  | 38.8                              | 40.4                                 | 39.4                                    |
| CDSs                            | 3599                              | 3279                                 | 3590                                    |
| Protein coding density (%)      | 87.5                              | 87.3                                 | 86.1                                    |
| Conserved hypothetical proteins | 504                               | 895                                  | 1077                                    |
| Insertion sequences             | 26                                | 13                                   | 33                                      |
| tRNAs                           | 69                                | 76                                   | 72                                      |
| rRNA operons                    | 2                                 | 7                                    | 6                                       |

<sup>a</sup> Data from Vallenet et al. (2008).

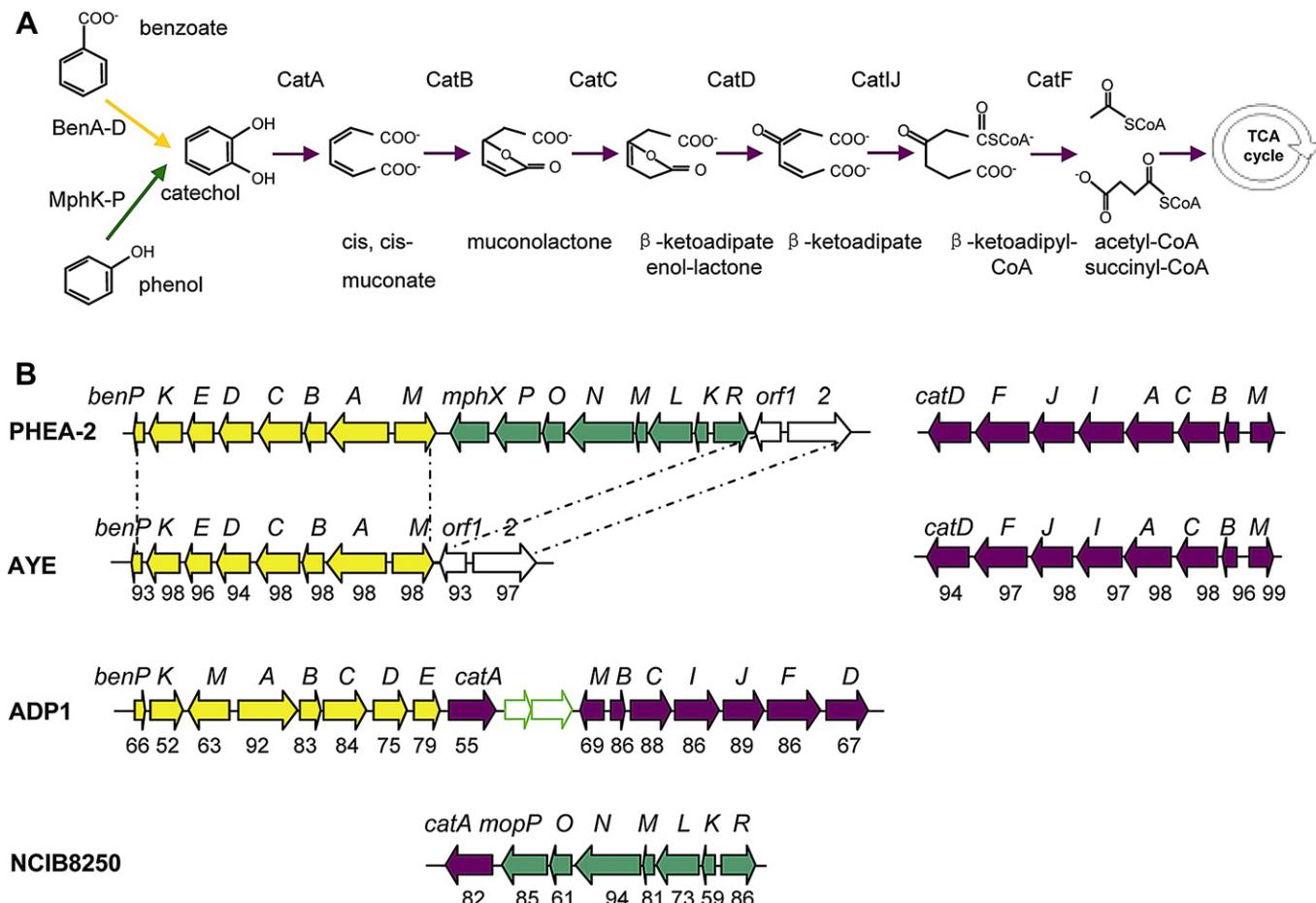



Fig. 3. Catabolic pathways for phenol and benzoate degradation in *Acinetobacter* strains. (A) Predicted biochemical steps of the catechol pathway in *A. calcoaceticus* PHEA-2. (B) Gene clusters for the degradation of phenol and benzoate in *A. calcoaceticus* PHEA-2, *A. baumannii* AYE, *A. calcoaceticus* NCIB8250 and *A. baylyi* ADP1, respectively. The *mph* gene cluster is inserted upstream of ORF1, a putative copper chaperone gene, in the highly conserved region which contains the *ben* gene cluster. The *mph* gene cluster is flanked by 6-bp direct repeats (CTCAAA), suggesting horizontal acquisition. Numbers beneath the arrows indicate the percentage of amino acid sequence identity between gene product and the equivalent protein of PHEA-2.

AYE (Adams et al., 2008; Fournier et al., 2006) (Table 3). No genes coding for toxins are detected in *A. calcoaceticus* or *A. baumannii*. PHEA-2 lacks genes for practically all known host-related virulence traits, such as type III and type IV secretion systems or hydrolytic enzymes while, as reported before, *A. baumannii*, contains a Type IV secretion apparatus similar to those proven to be important for virulence in the Legionella/Coxiella system (Smith et al., 2007).

*A. baumannii* AYE was found to carry an 86-kb island containing 45 genes conferring resistance to different classes of antibiotics (Fournier et al., 2006). In contrast, PHEA-2 was sensitive to most antibiotics. Thus, as expected, most of the resistance genes identified in *A. baumannii* were absent in the PHEA-2 genome except for *ampC* (resistance to beta-lactams), *parC* and *gyrA* (resistance to fluoroquinolones) and the putative aminoglycoside adenyltransferase (resistance to aminoglycosides) (Table 3) (Fournier et al., 2006). Furthermore, the AYE resistance island encodes a complete operon associated with arsenic resistance (Fournier et al., 2006), which is found in many Gram-negative clinical strains and in environmental isolates (Misra, 1992; Saltikov and Olson, 2002). PHEA-2 was found to carry a defective arsenic resistance operon that lacks

the essential *arsH* gene (Table 4). While genes associated with acriflavin-resistance are found in both PHEA-2 and AYE, no corresponding genes are detected in ADP1. Although PHEA-2 is sensitive to most antibiotics, we identified 12 genes conferring resistance to heavy metals including copper, cobalt, tellurite and arsenate. Resistance to heavy metal toxicity is important for microbes inhabiting contaminated sites.

### 3.3. Phenol degradation

The main routes for degradation of aromatic compounds found in PHEA-2 (i.e. the catechol (*cat*), protocatechuate (*pca*), phenylacetate (*pha*) or benzoate (*ben*)), are similar to those previously described in the soil-living *A. baylyi* ADP1 (Barbe et al., 2004) (Fig. S3). The clustering of these catabolic genes and their high G + C (47.4%, 50.8%, 51.4% and 49.1%) support the hypothesis that the four catabolic regions in the PHEA-2 genome were acquired by HGT (Fig. 1).

Phenol degradation is an unusual feature of *Acinetobacter* species and this raises a question of the origin of genes responsible for phenol catabolism. Only one other strain, *A. calcoaceticus* NCIB8250, was reported to utilize phenol

Table 2  
Competence genes of *A. calcoaceticus* PHEA-2.

| Gene         | Predicted function                                             | PHEA-2 locus | ADP1 locus | AYE locus |
|--------------|----------------------------------------------------------------|--------------|------------|-----------|
| <i>comL</i>  | DNA uptake lipoprotein                                         | BDGL000107   | ACIAD2898  | ABAYE2974 |
| <i>pilU</i>  | Twitching motility protein                                     | BDGL000160   | ACIAD0911  | ABAYE2919 |
| <i>pilT</i>  | Twitching motility protein                                     | BDGL000161   | ACIAD0912  | ABAYE2918 |
| <i>pilZ</i>  | Type IV pilus biogenesis protein                               | BDGL000949   | ACIAD2360  | ABAYE2074 |
| <i>comEC</i> | DNA internalization-related competence protein                 | BDGL002047   | No         | ABAYE2047 |
| <i>pilJ</i>  | Type IV pilus biogenesis protein                               | BDGL002264   | ACIAD0789  | ABAYE0670 |
| <i>pilI</i>  | Twitching motility protein                                     | BDGL002265   | ACIAD0788  | ABAYE0669 |
| <i>pilH</i>  | Twitching motility protein                                     | BDGL002266   | ACIAD0787  | ABAYE0668 |
| <i>pilG</i>  | Twitching motility protein                                     | BDGL002267   | ACIAD0786  | ABAYE0667 |
| <i>filmT</i> | Putative type IV fimbrial biogenesis protein                   | BDGL002303   | No         | ABAYE0639 |
| <i>comF</i>  | Putative DNA transformation protein                            | BDGL002557   | ACIAD2898  | ABAYE0393 |
| <i>pilE</i>  | Tfp pilus assembly protein                                     | BDGL002629   | ACIAD3314  | ABAYE0320 |
| <i>comE</i>  | Pilin A like competence factor                                 | BDGL002630   | ACIAD3315  | ABAYE0319 |
| <i>comC</i>  | Putative competence factor involved in DNA binding and uptake  | BDGL002631   | ACIAD3316  | ABAYE0318 |
| <i>pilX</i>  | Putative type IV fimbrial biogenesis protein                   | BDGL002632   | ACIAD3317  | ABAYE0317 |
| <i>comB</i>  | Possible pilus assembly protein                                | BDGL002633   | ACIAD3318  | ABAYE0316 |
| <i>pilV</i>  | Type IV fimbrial biogenesis protein                            | BDGL002634   | ACIAD3319  | ABAYE0315 |
| <i>pilA</i>  | Tfp pilus assembly protein                                     | BDGL002647   | No         | No        |
| <i>comQ</i>  | Fimbrial assembly protein                                      | BDGL002657   | ACIAD3355  | ABAYE0294 |
| <i>comL</i>  | Putative lipoprotein                                           | BDGL002658   | ACIAD3356  | ABAYE0293 |
| <i>comO</i>  | Putative lipoprotein                                           | BDGL002659   | ACIAD3357  | ABAYE0292 |
| <i>comN</i>  | Putative lipoprotein                                           | BDGL002660   | ACIAD3359  | ABAYE0291 |
| <i>comM</i>  | Putative lipoprotein                                           | BDGL002661   | ACIAD3360  | ABAYE0290 |
| <i>pilD</i>  | Type 4 prepilin-like proteins leader peptide processing enzyme | BDGL003237   | ACIAD0360  | ABAYE3446 |
| <i>pilC</i>  | Type IV fimbrial assembly protein                              | BDGL003239   | ACIAD0361  | ABAYE3445 |
| <i>pilB</i>  | Type IV-A pilus assembly                                       | BDGL003240   | ACIAD0362  | ABAYE3444 |
| <i>pilF</i>  | Type IV fimbrial biogenesis protein                            | BDGL003412   | ACIAD0558  | ABAYE3265 |
| <i>smf</i>   | Putative protein involved in DNA uptake                        | BDGL002087   | ACIAD0209  | ABAYE3707 |
| <i>comEA</i> | Putative DNA uptake protein                                    | BDGL003489   | No         | No        |
| <i>comM</i>  | Magnesium chelatase, competence related protein                | BDGL003129   | ACIAD0242  | ABAYE3668 |

(Schirmer et al., 1997). The general organization of phenol degradation genes in PHEA-2 shows a high degree of similarity to that of *A. calcoaceticus* NCIB8250 (Xu et al., 2003), except that the *mphX* gene downstream from the *mphP* gene in PHEA-2 is absent in NCIB8250 (Fig. 3). It is likely that the phenol degradation gene cluster was acquired by horizontal transfer from a common ancestor and that the *mphX* gene was subsequently lost by NCIB8250. The *mphX* gene is transcribed in the same direction as *mphKLMNOP* and encodes a protein with 293 amino acid residues showing weak identity with some unknown proteins encoded in the meta-cleavage pathway gene clusters for aromatic compound degradation. Our results indicated involvement of a novel repressor protein MphX in transcriptional regulation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR (Yu et al., 2011).

The *mph* catabolic island in PHEA-2 was inserted into a pre-existing catabolic island carrying the *ben* cluster, encoding for benzoate degradation. Interestingly, *ben* cluster regions in both PHEA-2 and AYE were very similar. Insertion of the 8-kb *mph* gene cluster, flanked by a 6-bp direct repeat, occurred between genes encoding the transcriptional activator BenM and a putative copper chaperone (Fig. 3B). As previously pointed out, soil is presumed to be the primary niche of *Acinetobacter* (Muñoz-Price and Weinstein, 2008). Data reported here support this hypothesis and strongly suggest that the three *Acinetobacter*

species evolved from a soil-living ancestor and consecutively acquired the genes responsible for aromatic compound degradation via HGT. We inferred that the *mph* gene cluster of PHEA-2 emerged as a result of adaptation to extreme and hostile modern wastewater environments.

Hence, the *mph* gene cluster may be an interesting case for further study of the evolutionary and regulatory mechanisms of phenol degradation.

#### 3.4. Multiplicity of transport systems

Consistent with its metabolic versatility and environmental adaptability, *A. calcoaceticus* PHEA-2 possesses extensive transport capabilities. At least 443 genes encode transport-related proteins for aromatic compounds, amino acid, nucleotides, carbohydrates, lipid and inorganic ions in PHEA-2. Most of these transport systems also exist in *A. baylyi* ADP1 and *A. baumannii* AYE. However, a relatively higher proportion of transport-related proteins (12% of total proteins) were found in PHEA-2 than in ADP1 (10%) and AYE (9.5%) (Vallenet et al., 2008).

At least 32 transporters belonging to five families plausibly associated with drug resistance were identified in the PHEA-2 genome, including major facilitator superfamily (MFS), drug/metabolite transporters (DMT), resistance-nodulation-cell division (RND), the ATP binding cassette (ABC), and

Table 3

Various antibiotic resistance genes in *A. baumannii* AYE and *A. calcoaceticus* PHEA-2.

| Antibiotic class | Gene          | Predicted specificity        | AYE locus | PHEA-2 locus (identity) |
|------------------|---------------|------------------------------|-----------|-------------------------|
| Beta-lactams     | <i>verb-1</i> | All bla except carb          | ABAYE3623 | No                      |
|                  | <i>ampC</i>   | All bla except ctx, caz, fep | ABAYE1110 | BDGL001854 (95%)        |
|                  | <i>oxa-10</i> | All bla except esc, carb     | ABAYE3619 | No                      |
|                  | <i>oxa-69</i> | Unknown                      | ABAYE2122 | No                      |
| Aminoglycosides  | <i>aadA1</i>  | Stre, spe                    | ABAYE3618 | No                      |
|                  | <i>aadDA1</i> | Stre, spe                    | ABAYE3570 | No                      |
|                  | <i>aadB</i>   | Gen, kan, tob                | ABAYE3622 | No                      |
|                  | <i>aadA</i>   | Unknown                      | ABAYE3739 | BDGL003056 (95%)        |
|                  | <i>aphA1</i>  | Amikacin                     | ABAYE3578 | No                      |
|                  | <i>strA</i>   | Stre                         | ABAYE3648 | No                      |
|                  | <i>strB</i>   | Stre                         | ABAYE3647 | No                      |
|                  | <i>parC</i>   | All flu                      | ABAYE3679 | BDGL003117 (96%)        |
| Fluoroquinolones | <i>gyrA</i>   | All flu                      | ABAYE0867 | BDGL002058 (97%)        |
|                  |               |                              |           |                         |
| Tetracyclines    | <i>tetA</i>   | All tet                      | ABAYE3597 | No                      |
|                  | <i>tetR</i>   | All tet                      | ABAYE3598 | No                      |
|                  | <i>tetA</i>   | All tet                      | ABAYE3637 | No                      |
|                  | <i>tetR</i>   | All tet                      | ABAYE3639 | No                      |
| DHFR inhibitor   | <i>tetA</i>   | All tet                      | ABAYE0369 | No                      |
|                  | <i>dhfrI</i>  | Tri                          | ABAYE3644 | No                      |
| Chloramphenicol  | <i>dhfrX</i>  | Tri                          | ABAYE3614 | No                      |
|                  | <i>cmlA</i>   | Clo                          | ABAYE3620 | No                      |
| Rifampin         | <i>cmlA5</i>  | Clo                          | ABAYE3640 | No                      |
|                  | <i>arr-2</i>  | Rifampin                     | ABAYE3621 | No                      |
| Sulfonamides     | <i>sulI</i>   | All sulfonamides             | ABAYE3612 | No                      |

Abbreviation: bla, beta-lactams; carb, carbapenems; caz, ceftazidime; clo, chloramphenicol; ctx, ceftriaxone; esc, extended-spectrum cephalosporines; fep, cefepime; flu, fluoroquinolones; gen, gentamicin; kan, kanamycin; spe, spectinomycin; stre, streptomycin; tet, tetracyclines; tob, tobramycin; tri, trimethoprim; DHFR, dihydrofolate reductase.

membrane fusion proteins (MFP) (Fig. S4). PHEA-2 also carried a number of habitat-related transport systems. They include three  $\text{Na}^+$ -driven multidrug efflux pumps, as well as several systems for the detoxification of compounds like arsenate, cadmium, copper and other heavy metals. The PHEA-2 genome encoded at least three systems for the uptake and biosynthesis of osmoprotectants such as glycine-betaine, carnitine, choline, and betaine (*betaA*, and *betB*). Presumably, these osmoprotectants accumulate in the cytoplasm in response to osmotic stress. They cannot be used as carbon sources due to the lack of the genes necessary for their catabolism. In the PHEA-2 genome, at least one ABC transporter (*ttgABCD*) is similar to efflux pumps for organic solvents in *P. putida* DOT-T1E, suggesting a physiological role in the efflux of toxic substrates or metabolites that may accumulate in the cell (Rojas et al., 2001).

PHEA-2 carries two systems for iron transport, one based on siderophore-binding and the other on heme binding. Both systems were probably acquired by HGT, since they had a higher G + C content. The histamine-derived siderophore is

Table 4

Genes of *A. baumannii* AYE and *A. calcoaceticus* PHEA-2 associated with resistance to antiseptics.

| Antiseptic class   | Gene                                  | Predicted specificity | AYE locus | PHEA-2 locus (identity) |
|--------------------|---------------------------------------|-----------------------|-----------|-------------------------|
| Heavy metals       | Arsenic resistance operon <i>arsB</i> | Arsenic, antimony     | ABAYE3659 | BDGL000837 (89%)        |
|                    | <i>arsC</i>                           |                       | ABAYE3658 | BDGL000835 (93%)        |
|                    | <i>arsH</i>                           |                       | ABAYE3660 | No                      |
|                    | <i>arsR</i>                           |                       | ABAYE3657 | BDGL000836 (59%)        |
|                    | Mercury resistance operon <i>merA</i> | Mercury               | ABAYE3605 | No                      |
| Other heavy metals | <i>merC</i>                           |                       | ABAYE3604 | No                      |
|                    | <i>merD</i>                           |                       | ABAYE3606 | No                      |
|                    | <i>merE</i>                           |                       | ABAYE3607 | No                      |
|                    | <i>merR</i>                           |                       | ABAYE3601 | No                      |
|                    | <i>czcD</i> (Co/Zn/Cd efflux system)  |                       | ABAYE0272 | BDGL002678 (97%)        |

also present in *A. baumannii* AYE but not in *A. baylyi* ADP1 (Vallenet et al., 2008). As shown in Fig. 4A, the 26 kb region (BDGL001860-001879) from strain PHEA-2 had the same gene order and very similar protein sequences as the corresponding region of *A. baumannii* (ABAYE1085-1104) (Vallenet et al., 2008). This siderophore is composed of histamine (*bas* and *hdc* genes) and siderophore transporters (*bar* and *bau* genes). The histamine moiety of the siderophore results from histidine decarboxylation which is catalyzed by the histidine decarboxylase encoded by the *hdc* gene in PHEA-2 and AYE. *A. baylyi*, which lacks the histamine siderophore, carries a transposase-flanked gene cluster encoding a siderophore composed of 2, 3-dihydroxybenzoic acid, serine, threonine or cysteine and possibly other unidentified elements, and therefore obviously different from the histamine siderophore of PHEA-2 (Fig. 4A) (Vallenet et al., 2008). PHEA-2 also contains a second iron acquisition system (BDGL000189-000196) similar to the heme acquisition system already described in *A. baumannii* strain SDF (ABSDF2280-2288), but absent from *A. baumannii* AYE and *A. baylyi* ADP1 (Fig. 4B) (Vallenet et al., 2008).

The multiplicity of transport systems noted in *A. calcoaceticus* PHEA-2 is probably of importance for its persistence in an industrial wastewater environment where nutrients are scarce and xenobiotic pollutants are diverse.

### 3.5. Genes possibly involved in the colonization of sewage environments

Strain PHEA-2 carries several genes that seem to play a role in biofilm formation, which is important for the colonization at the organic–water interfaces in sewage environments. We identified 38 genes including three genes encoding type I fimbriae assembly proteins, and 23 genes encoding type IV pili assembly proteins. It has been reported that type IV pili, flagella,

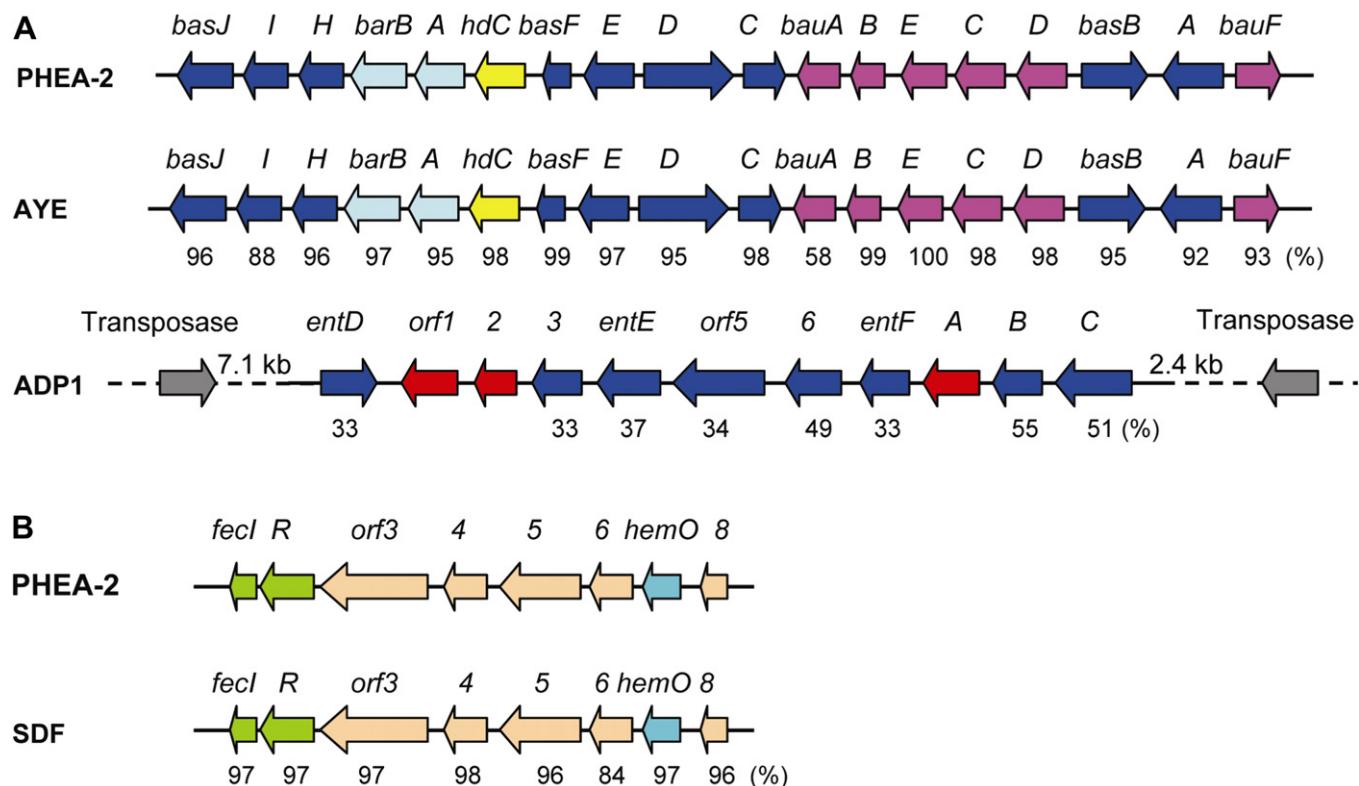



Fig. 4. Genetic organization of the gene clusters for (A) siderophore biosynthesis and transport and (B) haeme acquisition in *A. calcoaceticus* PHEA-2 in comparisons with the equivalent clusters from the other *Acinetobacter* strains. Numbers beneath the arrows indicate the percentage of amino acid sequence identity compared to the equivalent protein from PHEA-2. Corresponding operons have the same color.

or fimbriae is important for biofilm formation and type I fimbriae is also necessary for early biofilm formation (Pratt and Kolter, 1998; Vidal et al., 1996). Expression of chaperone usher secretion (*csu*) systems is required for pili formation and the concomitant attachment to plastic surfaces ensuring the formation of biofilm in *A. baumannii* (Tomaras et al., 2003). Three *csu* groups of genes have also been identified in PHEA-2. Apart from the *csu* systems, two-component systems involved in biofilm formation and diverse regulation networks (such as catabolite repression control) are also present in PHEA-2 (Bleichrodt et al., 2010).

Strain PHEA-2 shares in common with *A. baumannii* an operon encoding an AHL synthase and a LuxR family transcriptional regulator that could be involved in quorum sensing and biofilm formation (Kuchma and O'Toole, 2000; Rashid et al., 2000). This gene cluster does not exist in *A. baylyi* ADP1. Interestingly, PHEA-2 and *A. baumannii* AYE also contain an AHL lactonase gene that may be involved in the degradation of AHL signals.

### 3.6. Conclusion

In general, industrial wastewater is an extreme and hostile habitat where various xenobiotic compounds, including heavy metals, have toxic effects on microbial activity (Hu et al., 2005). Analysis of the complete genome sequence of PHEA-2 revealed the presence of genes whose functions are compatible with tolerance to various stresses. The

*A. calcoaceticus* PHEA-2 genome shares high synteny with *A. baumannii*. It carries several laterally acquired regions for survival in hostile environments, but lacks most of the MDR and other pathogenicity determinants found in *A. baumannii*. Significant differences were noted among the genes that encode proteins involved in catabolic pathways, transport systems, surface appendages biosynthesis. The PHEA-2 genome carries a set of genes sharing similarity with known habitat-related stress-response genes and which give an advantage for the survival in phenol-polluted, low-nutrient wastewater. These findings may have significant potential for biotechnological applications.

### Acknowledgments

The authors wish to thank Dr. Claudine Elmerich for many helpful discussions and Dr. Tobias Kieser for critical reading of the manuscript. This work was supported by grants from the National Natural Science Foundation of China (No. 30925002 and 30970093), the National Basic Research (973) Program of China (No. 2010CB126504 and 2007CB707805) and the National High-Tech (863) Program of China (No. 2010AA10A203).

### Appendix. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.resmic.2011.10.006.

## References

Adams, M.D., Goglin, K., Molyneaux, N., Hujer, K.M., Lavender, H., Jamison, J.J., MacDonald, I.J., Martin, K.M., Russo, T., Campagnari, A.A., Hujer, A.M., Bonomo, R.A., Gill, S.R., 2008. Comparative genome sequence analysis of multidrug-resistant *Acinetobacter baumannii*. *J. Bacteriol.* 190, 8053–8064.

Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L.N., Weissenbach, J., Marliere, P., Cohen, G.N., Medigue, C., 2004. Unique features revealed by the genome sequence of *Acinetobacter* sp. ADP1, a versatile and naturally transformation competent bacterium. *Nucleic Acids Res.* 32, 5766–5779.

Bleichrodt, F.S., Fischer, R., Gerischer, U.C., 2010. The  $\beta$ -ketoadipate pathway of *Acinetobacter baylyi* undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. *Microbiology* 156, 1313–1322.

Diancourt, L., Passet, V., Nemec, A., Dijkshoorn, L., Brisse, S., 2010. The population structure of *Acinetobacter baumannii*: expanding multiresistant clones from an ancestral susceptible genetic pool. *PLoS One* 5, e10034.

Dolzani, L., Tonin, E., Lagatolla, C., Prandin, L., Monti-Bragadin, C., 1995. Identification of *Acinetobacter* isolates in the *A. calcoaceticus*-*A. baumannii* complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. *J. Clin. Microbiol.* 33, 1108–1113.

Fournier, P.E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., Nordmann, P., Weissenbach, J., Raoult, D., Claverie, J.M., 2006. Comparative genomics of multidrug resistance in *Acinetobacter baumannii*. *PLoS Genet.* 2, e7.

Friedrich, A., Hartsch, T., Averhoff, B., 2001. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in *Acinetobacter* sp. strain BD413 and *Thermus thermophilus* HB27. *Appl. Environ. Microbiol.* 67, 3140–3148.

Gerner-Smidt, P., Tjernberg, I., Ursing, J., 1991. Reliability of phenotypic tests for identification of *Acinetobacter* species. *J. Clin. Microbiol.* 29, 277–282.

Hu, P., Brodie, E.L., Suzuki, Y., McAdams, H.H., Andersen, G.L., 2005. Whole-genome transcriptional analysis of heavy metal stresses in *Caulobacter crescentus*. *J. Bacteriol.* 187, 8437–8449.

Juni, E., 1978. Genetics and physiology of *Acinetobacter*. *Annu. Rev. Microbiol.* 32, 349–371.

Kuchma, S.L., O'Toole, G.A., 2000. Surface-induced and biofilm-induced changes in gene expression. *Curr. Opin. Biotechnol.* 11, 429–433.

Metzgar, D., Bacher, J.M., Pezo, V., Reader, J., Doring, V., Schimmel, P., Marliere, P., de Crecy-Lagard, V., 2004. *Acinetobacter* sp. ADP1: an ideal model organism for genetic analysis and genome engineering. *Nucleic Acids Res.* 32, 5780–5790.

Misra, T.K., 1992. Bacterial resistances to inorganic mercury salts and organomercurials. *Plasmid* 27, 4–16.

Munoz-Price, L.S., Weinstein, R.A., 2008. *Acinetobacter* infection. *N. Engl. J. Med.* 358, 1271–1281.

Palmen, R., Vosman, B., Buijsman, P., Breek, C.K., Hellingwerf, K.J., 1993. Physiological characterization of natural transformation in *Acinetobacter calcoaceticus*. *J. Gen. Microbiol.* 139, 295–305.

Pratt, L.A., Kolter, R., 1998. Genetic analysis of *Escherichia coli* biofilm formation: roles of flagella, motility, chemotaxis and type I pili. *Mol. Microbiol.* 30, 285–293.

Rashid, M.H., Rumbaugh, K., Passador, L., Davies, D.G., Hamood, A.N., Iglewski, B.H., Kornberg, A., 2000. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci.* 97, 9636–9641.

Rojas, A., Duque, E., Mosqueda, G., Golden, G., Hurtado, A., Ramos, J.L., Segura, A., 2001. Three efflux pumps are required to provide efficient tolerance to toluene in *Pseudomonas putida* DOT-T1E. *J. Bacteriol.* 183, 3967–3973.

Saltikov, C.W., Olson, B.H., 2002. Homology of *Escherichia coli* R773 *arsA*, *arsB*, and *arsC* genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. *Appl. Environ. Microbiol.* 68, 280–288.

Schirmer, F., Ehrt, S., Hillen, W., 1997. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in *Acinetobacter calcoaceticus* NCIB8250. *J. Bacteriol.* 179, 1329–1336.

Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M., Snyder, M., 2007. New insights into *Acinetobacter baumannii* pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. *Genes Dev.* 21, 601–614.

Soledad Ramirez, M., Don, M., Merkier, A.K., Soler Bistue, A.J., Zorreguieta, A., Centron, D., Tolmacy, M.E., 2010. A naturally competent *Acinetobacter baumannii* clinical isolate as a convenient model for genetic studies. *J. Clin. Microbiol.* 48, 1488–1490.

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* 24, 1596–1599.

Tomaras, A.P., Dorsey, C.W., Edelmann, R.E., Actis, L.A., 2003. Attachment to and biofilm formation on abiotic surfaces by *Acinetobacter baumannii*: involvement of a novel chaperone-usher pilus assembly system. *Microbiology* 149, 3473–3484.

Towner, K.J., 2009. *Acinetobacter*: an old friend, but a new enemy. *J. Hosp. Infect.* 73, 355–363.

Vallenet, D., Nordmann, P., Barbe, V., Poirel, L., Mangenot, S., Bataille, E., Dossat, C., Gas, S., Kreimeyer, A., Lenoble, P., Oztas, S., Poulain, J., Segurens, B., Robert, C., Abergel, C., Claverie, J.M., Raoult, D., Medigue, C., Weissenbach, J., Cruveiller, S., 2008. Comparative analysis of *Acinetobacters*: three genomes for three lifestyles. *PLoS One* 3, e1805.

van Dessel, H., Dijkshoorn, L., van der Reijden, T., Bakker, N., Paauw, A., van den Broek, P., Verhoef, J., Brisse, S., 2004. Identification of a new geographically widespread multiresistant *Acinetobacter baumannii* clone from European hospitals. *Res. Microbiol.* 155, 105–112.

Vidal, R., Dominguez, M., Urrutia, H., Bello, H., Gonzalez, G., Garcia, A., Zemelman, R., 1996. Biofilm formation by *Acinetobacter baumannii*. *Microbios* 86, 49–58.

Xu, Y.Q., Chen, M., Zhang, W., Lin, M., 2003. Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in *Acinetobacter calcoaceticus* PHEA-2. *Curr. Microbiol.* 46, 235–240.

Young, D.M., Parke, D., Ornston, L.N., 2005. Opportunities for genetic investigation afforded by *Acinetobacter baylyi*, a nutritionally versatile bacterial species that is highly competent for natural transformation. *Annu. Rev. Microbiol.* 59, 519–551.

Yu, H.Y., Peng, Z.X., Zhan, Y.H., Wang, J., Yan, Y.L., Chen, M., Lu, W., Ping, S.Z., Zhang, W., Zhao, Z.L., Li, S.Y., Takeo, M., Lin, M., 2011. Novel regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR in *Acinetobacter calcoaceticus*. *PLoS One* 6, e17350.

Zhan, Y.H., Yu, H.Y., Yan, Y.L., Chen, M., Lu, W., Li, S.Y., Peng, Z.X., Zhang, W., Ping, S.Z., Wang, J., Lin, M., 2008. Genes involved in the benzoate catabolic pathway in *Acinetobacter calcoaceticus* PHEA-2. *Curr. Microbiol.* 57, 609–614.

Zhan, Y.H., Yu, H.Y., Yan, Y.L., Ping, S.Z., Lu, W., Zhang, W., Chen, M., Lin, M., 2009. Benzoate catabolite repression of the phenol degradation in *Acinetobacter calcoaceticus* PHEA-2. *Curr. Microbiol.* 59, 368–373.

Zhan, Y.H., Yan, Y.L., Zhang, W., Yu, H.Y., Chen, M., Lu, W., Ping, S.Z., Peng, Z.X., Yuan, M.L., Zhou, Z.F., Elmerich, C., Lin, M., 2011. Genome sequence of *Acinetobacter calcoaceticus* PHEA-2, isolated from industry wastewater. *J. Bacteriol.* 193, 2672–2673.

1    **Supplementary materials for online publication**

2    **Fig. S1 Synteny between the three *Acinetobacter* strains.** The program of MUMmer  
3    software was used to compare    amino acid sequences of the predicted genes. Five  
4    syntenous genes in a row produced a single dot on the graph. The start of the PHEA-2  
5    genome was adjusted to make it begin with *dnaA* in accordance with the others.

6    **Fig. S2 Unrooted 16S rRNA gene sequence-based dendrogram, revealing the**  
7    **relationships between the *Acinetobacter* genome sequences in GenBank.** Cluster analysis  
8    based on the neighbor-joining method was performed using Genebase (Applied Maths) using  
9    an open gap penalty of 100% and a unit gap cost of 25%. Underlining indicates completed  
10   genome sequences.

11   **Fig. S3 Predicted biochemical steps for the catabolism of aromatic compounds in *A.***  
12   ***calcoaceticus* PHEA-2.** The three central aromatic intermediates, protocatechuate, catechol  
13   and phenylacetate, are boxed.

14   **Fig. S4 Comparison of the numbers of predicted drug efflux proteins in *A. calcoaceticus***  
15   **PHEA-2, *A. baumannii* AYE and *A. baylyi* ADP1.** Transport proteins were classified using  
16   the TransAAP tool (<http://www.membranetransport.org/>) which is based on the TransportDB  
17   program. Genetically associated membrane fusion or outer membrane proteins were not  
18   included in the graph, and only homologues of known multidrug efflux transporters were  
19   counted. MFS, major facilitator superfamily; DMT, drug/metabolite transporter superfamily;  
20   ABC, ATP-binding cassette superfamily; RND, resistance-nodulation-cell division  
21   superfamily; MFP, membrane fusion protein superfamily. The total number of transport  
22   proteins is given in parentheses after the strain designation.

**Table S1. Genes present in PHEA-2 but absent in ADP1 and AYE**

| Gene ID    | Gene name   | Size<br>(bp) | Product              | Best match (% nucleotide identity) |
|------------|-------------|--------------|----------------------|------------------------------------|
| BDGL000001 |             | 2243         | hypothetical protein | <i>A. baumannii</i> SDF (92%)      |
| BDGL000002 |             | 1025         | hypothetical protein | <i>A. baumannii</i> SDF (90%)      |
| BDGL000006 |             | 623          | hypothetical protein | No hits                            |
| BDGL000007 |             | 347          | hypothetical protein | No hits                            |
| BDGL000008 |             | 371          | hypothetical protein | No hits                            |
| BDGL000009 | <i>tmpR</i> | 632          | hypothetical protein | <i>A. baumannii</i> SDF (88%)      |
| BDGL000010 |             | 584          | hypothetical protein | No hits                            |
| BDGL000012 |             | 134          | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL000038 |             | 170          | hypothetical protein | <i>A. baumannii</i> SDF (86%)      |
| BDGL000046 |             | 347          | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (91%) |
| BDGL000141 |             | 539          | hypothetical protein | <i>A. baumannii</i> ACICU (93%)    |
| BDGL000178 |             | 434          | hypothetical protein | No hits                            |
| BDGL000179 |             | 911          | hypothetical protein | No hits                            |
| BDGL000181 |             | 875          | hypothetical protein | <i>A. baumannii</i> SDF (94%)      |
| BDGL000182 |             | 527          | hypothetical protein | No hits                            |
| BDGL000183 |             | 617          | hypothetical protein | No hits                            |
| BDGL000237 |             | 119          | hypothetical protein | <i>A. baumannii</i> AB0057 (99%)   |
| BDGL000260 | <i>fepA</i> | 143          | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (98%) |

|            |             |      |                            |                                             |
|------------|-------------|------|----------------------------|---------------------------------------------|
| BDGL000271 |             | 128  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%)          |
| BDGL000295 |             | 458  | hypothetical protein       | <i>A. baumannii</i> ATCC17978 (98%)         |
| BDGL000306 |             | 167  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%)          |
| BDGL000316 |             | 113  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (89%)          |
| BDGL000349 |             | 317  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (94%)          |
| BDGL000351 | <i>yjgN</i> | 1088 | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (95%)          |
| BDGL000353 |             | 923  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (93%)          |
| BDGL000354 |             | 470  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (93%)          |
| BDGL000358 |             | 389  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (74%)          |
| BDGL000363 |             | 707  | hypothetical protein       | <i>A. baumannii</i> AB307-0294 (95%)        |
| BDGL000372 |             | 452  | hypothetical protein       | <i>A. baumannii</i> 17978 (93%)             |
| BDGL000373 |             | 200  | hypothetical protein       | No hits                                     |
| BDGL000374 |             | 554  | hypothetical protein       | No hits                                     |
| BDGL000434 |             | 119  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (95%)          |
| BDGL000448 |             | 374  | hypothetical protein       | No hits                                     |
| BDGL000467 |             | 128  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (96%)          |
| BDGL000469 | <i>mphX</i> | 881  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (94%)          |
| BDGL000470 | <i>mphP</i> | 1061 | phenol 2-monoxygenase      | <i>A.calcoaceticus</i> NCIB8250 (84%)       |
| BDGL000471 | <i>mphO</i> | 362  | phenol hydroxylase protein | P4<br><i>A.calcoaceticus</i> NCIB8250 (61%) |
| BDGL000472 | <i>mphN</i> | 1526 | phenol hydroxylase protein | P3<br><i>A.calcoaceticus</i> NCIB8250 (94%) |

|            |             |      |                                           |             |    |                                       |
|------------|-------------|------|-------------------------------------------|-------------|----|---------------------------------------|
|            |             |      | phenol                                    | hydroxylase | P2 |                                       |
| BDGL000473 | <i>mphM</i> | 266  | protein                                   |             |    | <i>A.calcoaceticus</i> NCIB8250 (81%) |
| BDGL000474 | <i>mphL</i> | 998  | phenol 2-monoxygenase                     |             |    | <i>A.calcoaceticus</i> NCIB8250 (72%) |
| BDGL000475 |             | 116  | hypothetical protein                      |             |    | <i>Acinetobacter</i> sp. DR1 (94%)    |
| BDGL000476 | <i>mphK</i> | 287  | phenol 2-monoxygenase                     |             |    | <i>A.calcoaceticus</i> NCIB8250 (59%) |
| BDGL000477 | <i>mphR</i> | 1670 | activator<br>phenol-degradative genes     |             | of | <i>A.calcoaceticus</i> NCIB8250 (86%) |
| BDGL000504 |             | 131  | hypothetical protein                      |             |    | <i>Acinetobacter</i> sp. DR1 (97%)    |
| BDGL000511 |             | 362  | hypothetical protein                      |             |    | <i>Acinetobacter</i> sp. DR1 (90%)    |
| BDGL000514 |             | 404  | hypothetical protein                      |             |    | <i>Acinetobacter</i> sp. DR1 (83%)    |
| BDGL000518 |             | 860  | modification methylase                    |             |    | <i>A. baumannii</i> ACICU (90%)       |
| BDGL000519 |             | 1430 | hypothetical protein                      |             |    | No hits                               |
| BDGL000546 |             | 116  | hypothetical protein                      |             |    | <i>A. baumannii</i> AB307-0294 (98%)  |
| BDGL000550 |             | 146  | hypothetical protein                      |             |    | <i>A. baumannii</i> AB307-0294 (100%) |
| BDGL000556 |             | 128  | hypothetical protein                      |             |    | No hits                               |
| BDGL000572 | <i>ioLE</i> | 1052 | apurinic/apyrimidinic<br>endonuclease     |             |    | <i>Acinetobacter</i> sp. DR1 (94%)    |
| BDGL000579 |             | 371  | hypothetical protein                      |             |    | No hits                               |
|            |             |      | probable                                  |             |    |                                       |
| BDGL000584 | <i>ytfG</i> | 950  | nucleoside-diphosphate-sugar<br>epimerase |             |    | <i>Acinetobacter</i> sp. DR1 (85%)    |
| BDGL000586 |             | 692  | hypothetical protein                      |             |    | <i>A. baumannii</i> 17978 (88%)       |

|            |      |                      |                                    |                                    |
|------------|------|----------------------|------------------------------------|------------------------------------|
| BDGL000590 | 962  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (89%) |                                    |
| BDGL000605 | 1910 | hypothetical protein | No hits                            |                                    |
| BDGL000616 | 1868 | hypothetical protein | No hits                            |                                    |
| BDGL000617 | 125  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%) |                                    |
| BDGL000626 | 1433 | hypothetical protein | <i>A. baumannii</i> 17978 (96%)    |                                    |
| BDGL000627 | 1079 | hypothetical protein | <i>A. baumannii</i> 17978 (85%)    |                                    |
| BDGL000633 | 920  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%) |                                    |
| BDGL000635 | 734  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (99%) |                                    |
| BDGL000636 | 776  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (98%) |                                    |
| BDGL000651 | 122  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%) |                                    |
| BDGL000779 | 113  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%) |                                    |
| BDGL000785 | 119  | hypothetical protein | <i>A. baumannii</i> ACICU (98%)    |                                    |
| BDGL000796 | 407  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (94%) |                                    |
| BDGL000817 | 146  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (95%) |                                    |
| BDGL000971 | hpA2 | 404                  | similar to acetyltransferase       | <i>Acinetobacter</i> sp. DR1 (90%) |
| BDGL000977 |      | 122                  | hypothetical protein               | <i>A. baumannii</i> SDF (87%)      |
| BDGL001025 |      | 116                  | hypothetical protein               | No hits                            |
| BDGL001056 |      | 716                  | hypothetical protein               | No hits                            |
| BDGL001099 |      | 245                  | hypothetical protein               | No hits                            |
| BDGL001101 |      | 113                  | hypothetical protein               | No hits                            |
| BDGL001102 |      | 191                  | hypothetical protein               | No hits                            |
| BDGL001103 |      | 428                  | hypothetical protein               | No hits                            |

|            |             |      |                                       |                                      |
|------------|-------------|------|---------------------------------------|--------------------------------------|
| BDGL001104 |             | 131  | hypothetical protein                  | No hits                              |
| BDGL001163 |             | 122  | hypothetical protein                  | <i>Acinetobacter</i> sp. DR1 (99%)   |
| BDGL001200 |             | 401  | hypothetical protein                  | No hits                              |
| BDGL001201 |             | 599  | hypothetical protein                  | No hits                              |
| BDGL001204 |             | 1562 | hypothetical protein                  | No hits                              |
| BDGL001206 |             | 554  | hypothetical protein                  | No hits                              |
| BDGL001221 | <i>pinR</i> | 581  | sin; recombinase Sin                  | <i>A. baumannii</i> SDF (85%)        |
| BDGL001226 |             | 248  | hypothetical protein                  | No hits                              |
| BDGL001228 |             | 908  | hypothetical protein                  | No hits                              |
| BDGL001267 |             | 545  | hypothetical protein                  | No hits                              |
| BDGL001270 |             | 941  | hypothetical protein                  | <i>Acinetobacter</i> sp. DR1 (91%)   |
|            |             |      | bifunctional                          |                                      |
| BDGL001271 | <i>frpA</i> | 1445 | hemolysin-adenylate cyclase precursor | <i>Acinetobacter</i> sp. DR1 (88%)   |
| BDGL001274 |             | 206  | hypothetical protein                  | <i>A. baumannii</i> ACICU (98%)      |
| BDGL001282 |             | 383  | hypothetical protein                  | No hits                              |
| BDGL001284 |             | 113  | hypothetical protein                  | No hits                              |
| BDGL001285 |             | 269  | hypothetical protein                  | No hits                              |
| BDGL001286 |             | 140  | hypothetical protein                  | <i>A. baumannii</i> AB307-0294 (99%) |
| BDGL001287 |             | 746  | hypothetical protein                  | No hits                              |
| BDGL001289 |             | 611  | hypothetical protein                  | No hits                              |
| BDGL001290 |             | 452  | hypothetical protein                  | <i>A. baumannii</i> SDF (80%)        |

|            |             |                                         |                                    |
|------------|-------------|-----------------------------------------|------------------------------------|
| BDGL001291 | 4286        | hypothetical protein                    | No hits                            |
| BDGL001304 | 368         | hypothetical protein                    | No hits                            |
| BDGL001461 | 128         | hypothetical protein                    | <i>Acinetobacter</i> sp. DR1 (93%) |
| BDGL001474 | 446         | hypothetical protein                    | No hits                            |
| BDGL001496 | 116         | hypothetical protein                    | <i>Acinetobacter</i> sp. DR1 (93%) |
| BDGL001498 | <i>ocd2</i> | 1013 ornithine cyclodeaminase           | <i>Acinetobacter</i> sp. DR1 (94%) |
| BDGL001502 | <i>garL</i> | 674 HpcH/HpaI aldolase                  | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL001528 |             | 632 hypothetical protein                | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL001529 |             | 1781 hypothetical protein               | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL001548 |             | 116 hypothetical protein                | <i>Acinetobacter</i> sp. DR1 (88%) |
| BDGL001551 |             | 287 hypothetical protein                | <i>Acinetobacter</i> sp. DR1 (91%) |
| BDGL001552 |             | 131 hypothetical protein                | <i>Acinetobacter</i> sp. DR1 (91%) |
| BDGL001557 |             | 209 hypothetical protein                | No hits                            |
| BDGL001558 |             | putative lysozyme from<br>bacteriophage | <i>A. baumannii</i> SDF (87%)      |
| BDGL001596 |             | 230 hypothetical protein                | <i>Acinetobacter</i> sp. DR1 (89%) |
| BDGL001685 |             | 1151 sterol desaturase                  | <i>Acinetobacter</i> sp. DR1 (93%) |
| BDGL001690 |             | 1829 hypothetical protein               | <i>Acinetobacter</i> sp. DR1 (95%) |
| BDGL001693 |             | 1010 phosphoenolpyruvate<br>carboxylase | <i>Acinetobacter</i> sp. DR1 (94%) |
| BDGL001697 |             | 1052 hypothetical protein               | <i>Acinetobacter</i> sp. DR1 (95%) |
| BDGL001723 |             | 1685 aspartate/alanine exchanger        | <i>A. baumannii</i> ACICU (94%)    |

|            |             |      |                            |                                    |
|------------|-------------|------|----------------------------|------------------------------------|
|            |             |      | family protein             |                                    |
| BDGL001724 | <i>aspC</i> | 1598 | aspartate aminotransferase | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL001755 |             | 128  | hypothetical protein       | No hits                            |
| BDGL001779 |             | 170  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (96%) |
| BDGL001801 |             | 161  | hypothetical protein       | <i>A. baumannii</i> SDF (99%)      |
| BDGL001865 |             | 155  | hypothetical protein       | <i>A. baumannii</i> ACICU (98%)    |
| BDGL001883 |             | 602  | hypothetical protein       | No hits                            |
| BDGL001884 |             | 1163 | hypothetical protein       | No hits                            |
| BDGL001885 |             | 938  | hypothetical protein       | No hits                            |
| BDGL001886 |             | 2027 | hypothetical protein       | No hits                            |
| BDGL001887 |             | 1355 | hypothetical protein       | No hits                            |
| BDGL001935 |             | 137  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%) |
| BDGL001945 |             | 125  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (96%) |
| BDGL001982 |             | 146  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (95%) |
| BDGL002031 |             | 185  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (94%) |
| BDGL002085 |             | 647  | hypothetical protein       | No hits                            |
| BDGL002087 |             | 743  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (91%) |
| BDGL002088 |             | 338  | hypothetical protein       | No hits                            |
| BDGL002092 |             | 323  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (96%) |
| BDGL002127 |             | 158  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (90%) |
| BDGL002150 |             | 134  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (99%) |
| BDGL002151 |             | 128  | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (99%) |

|            |             |                            |                                      |                                    |
|------------|-------------|----------------------------|--------------------------------------|------------------------------------|
| BDGL002156 | 125         | hypothetical protein       | No hits                              |                                    |
| BDGL002170 | 632         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (89%)   |                                    |
| BDGL002171 | 809         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (93%)   |                                    |
| BDGL002172 | 1190        | aspartate beta-hydroxylase | <i>Acinetobacter</i> sp. DR1 (92%)   |                                    |
| BDGL002173 | 1493        | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%)   |                                    |
| BDGL002194 | 1439        | hypothetical protein       | No hits                              |                                    |
| BDGL002195 | 671         | hypothetical protein       | No hits                              |                                    |
| BDGL002200 | 134         | hypothetical protein       | No hits                              |                                    |
| BDGL002206 | 191         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (93%)   |                                    |
| BDGL002232 | 113         | hypothetical protein       | No hits                              |                                    |
| BDGL002249 | 203         | hypothetical protein       | <i>A. baumannii</i> AB307-0294 (93%) |                                    |
| BDGL002284 | 116         | hypothetical protein       | <i>A. baumannii</i> AB307-0294 (78%) |                                    |
| BDGL002294 | <i>lamB</i> | 1181                       | maltoporin                           | <i>P. mendocina</i> YMP (52%)      |
| BDGL002343 | <i>yafK</i> | 581                        | hypothetical protein                 | <i>Acinetobacter</i> sp. DR1 (89%) |
| BDGL002350 |             | 560                        | putative glutathione S-transferase   | <i>A. baumannii</i> ACICU (93%)    |
| BDGL002395 | 197         | hypothetical protein       | No hits                              |                                    |
| BDGL002404 | 401         | hypothetical protein       | No hits                              |                                    |
| BDGL002436 | 926         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (90%)   |                                    |
| BDGL002465 | 359         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%)   |                                    |
| BDGL002466 | 965         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (88%)   |                                    |
| BDGL002467 | 560         | hypothetical protein       | <i>Acinetobacter</i> sp. DR1 (92%)   |                                    |

|            |             |      |                                               |                                      |
|------------|-------------|------|-----------------------------------------------|--------------------------------------|
| BDGL002468 |             | 419  | hypothetical protein                          | <i>Acinetobacter</i> sp. DR1 (89%)   |
| BDGL002478 |             | 314  | hypothetical protein                          | <i>A. baumannii</i> ACICU (95%)      |
| BDGL002501 |             | 152  | hypothetical protein                          | No hits                              |
| BDGL002546 |             | 152  | hypothetical protein                          | <i>Acinetobacter</i> sp. DR1 (91%)   |
| BDGL002566 |             | 209  | hypothetical protein                          | No hits                              |
| BDGL002580 |             | 416  | hypothetical protein                          | <i>Acinetobacter</i> sp. DR1 (93%)   |
| BDGL002581 |             | 425  | hypothetical protein                          | <i>A. baumannii</i> ACICU (86%)      |
| BDGL002614 |             | 788  | hypothetical protein                          | <i>Acinetobacter</i> sp. DR1 (97%)   |
| BDGL002615 |             | 1493 | hypothetical protein                          | No hits                              |
| BDGL002635 |             | 599  | hypothetical protein                          | <i>A. baumannii</i> ATCC17978 (84%)  |
| BDGL002639 |             | 155  | hypothetical protein                          | <i>A. baumannii</i> AB307-0294 (92%) |
| BDGL002642 |             | 128  | hypothetical protein                          | No hits                              |
| BDGL002646 |             | 1313 | hypothetical protein                          | No hits                              |
| BDGL002683 |             | 140  | hypothetical protein                          | No hits                              |
| BDGL002684 | <i>czcN</i> | 617  | protein-S-isoprenylcysteine methyltransferase | No hits                              |
| BDGL002695 |             | 122  | hypothetical protein                          | <i>Acinetobacter</i> sp. DR1 (98%)   |
| BDGL002714 |             | 164  | hypothetical protein                          | <i>A. baumannii</i> AB307-0294 (93%) |
| BDGL002720 |             | 458  | hypothetical protein                          | <i>A. baumannii</i> ATCC17978 (92%)  |
| BDGL002721 |             | 956  | hypothetical protein                          | <i>A. baumannii</i> ATCC17978 (94%)  |
| BDGL002725 |             | 353  | hypothetical protein                          | No hits                              |
| BDGL002726 | <i>fosA</i> | 407  | glutathione transferase FosA                  | <i>A. baumannii</i> ATCC17978 (84%)  |

|            |             |      |                                                              |                                     |
|------------|-------------|------|--------------------------------------------------------------|-------------------------------------|
| BDGL002735 |             | 140  | hypothetical protein                                         | <i>A. baumannii</i> ATCC17978 (92%) |
| BDGL002792 |             | 278  | hypothetical protein                                         | No hits                             |
| BDGL002807 |             | 695  | hypothetical protein                                         | No hits                             |
| BDGL002808 |             | 767  | hypothetical protein                                         | No hits                             |
| BDGL002830 |             | 173  | hypothetical protein                                         | <i>Acinetobacter</i> sp. DR1 (99%)  |
| BDGL002831 | <i>yfhB</i> | 656  | hypothetical protein                                         | <i>A. baumannii</i> ATCC17978 (90%) |
| BDGL002832 |             | 689  | hypothetical protein                                         | <i>A. baumannii</i> ATCC17978 (92%) |
| BDGL002833 |             | 2360 | hypothetical protein                                         | No hits                             |
| BDGL002834 |             | 563  | hypothetical protein                                         | No hits                             |
| BDGL002849 |             | 341  | hypothetical protein                                         | No hits                             |
| BDGL002850 |             | 1217 | FmdA2; formamidase                                           | <i>A. baumannii</i> ACICU (94%)     |
| BDGL002908 |             | 122  | hypothetical protein                                         | <i>Acinetobacter</i> sp. DR1 (98%)  |
| BDGL002960 |             | 125  | hypothetical protein                                         | <i>A. baumannii</i> SDF (98%)       |
| BDGL002972 | <i>ycjS</i> | 950  | hypothetical protein                                         | <i>Acinetobacter</i> sp. DR1 (92%)  |
| BDGL002978 | <i>amsK</i> | 1106 | amylovoran biosynthesis<br>glycosyl transferase AmsK         | <i>Acinetobacter</i> sp. DR1 (99%)  |
| BDGL002980 |             | 1064 | hypothetical protein                                         | <i>Acinetobacter</i> sp. DR1 (97%)  |
| BDGL002981 |             | 1100 | hypothetical protein                                         | <i>Acinetobacter</i> sp. DR1 (96%)  |
|            |             |      | LsgF; putative                                               |                                     |
| BDGL002982 | <i>lsgF</i> | 830  | UDP-galactose--lipooligosacc<br>haride galactosyltransferase | <i>Acinetobacter</i> sp. DR1 (96%)  |
| BDGL002989 | <i>cgmA</i> | 1661 | sulfatase                                                    | <i>Acinetobacter</i> sp. DR1 (94%)  |

|            |              |      |                      |                                     |
|------------|--------------|------|----------------------|-------------------------------------|
| BDGL002996 |              | 134  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (92%)  |
| BDGL003001 |              | 1607 | hypothetical protein | No hits                             |
| BDGL003003 |              | 509  | acetyltransferase    | <i>A. baumannii</i> SDF (91%)       |
| BDGL003008 |              | 800  | hypothetical protein | No hits                             |
| BDGL003009 |              | 296  | hypothetical protein | No hits                             |
| BDGL003010 |              | 515  | hypothetical protein | No hits                             |
| BDGL003011 |              | 353  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (86%)  |
| BDGL003012 |              | 476  | hypothetical protein | <i>A. baumannii</i> ATCC17978 (96%) |
| BDGL003014 |              | 503  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (89%)  |
| BDGL003104 |              | 203  | hypothetical protein | No hits                             |
| BDGL003105 | <i>creD</i>  | 1403 | hypothetical protein | <i>E. coli</i> K12 (24%)            |
| BDGL003108 |              | 116  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%)  |
| BDGL003123 |              | 188  | hypothetical protein | No hits                             |
| BDGL003166 |              | 146  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (97%)  |
| BDGL003213 |              | 116  | hypothetical protein | No hits                             |
| BDGL003215 |              | 125  | hypothetical protein | No hits                             |
| BDGL003221 |              | 173  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (95%)  |
| BDGL003225 |              | 131  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (93%)  |
| BDGL003257 | <i>glod5</i> | 386  | putative glyoxalase  | <i>Acinetobacter</i> sp. DR1 (92%)  |
| BDGL003298 |              | 128  | hypothetical protein | <i>Acinetobacter</i> sp. DR1 (96%)  |
| BDGL003323 |              | 1439 | hypothetical protein | No hits                             |
| BDGL003324 |              | 746  | SpoOM family protein | No hits                             |

|            |             |      |                                            |                                           |
|------------|-------------|------|--------------------------------------------|-------------------------------------------|
| BDGL003396 |             | 119  | acetate kinase                             | <i>Acinetobacter</i> sp. DR1 (97%)        |
| BDGL003465 |             | 122  | hypothetical protein                       | <i>A. baumannii</i> SDF (87%)             |
| BDGL003467 |             | 395  | hypothetical protein                       | <i>Acinetobacter</i> sp. DR1 (91%)        |
| BDGL003477 |             | 1262 | hypothetical protein                       | No hits                                   |
| BDGL003503 |             | 188  | hypothetical protein                       | <i>A. baumannii</i> AB307-0294 (93%)      |
| BDGL003511 |             | 125  | hypothetical protein                       | <i>Acinetobacter</i> sp. DR1 (98%)        |
| BDGL003543 | <i>bag</i>  | 440  | DNA-directed polymerase II largest subunit | RNA<br><i>Acinetobacter</i> sp. DR1 (86%) |
| BDGL003570 |             | 659  | hypothetical protein                       | <i>Acinetobacter</i> sp. DR1 (93%)        |
| BDGL003579 |             | 1052 | uncharacterized protein                    | No hits                                   |
| BDGL003580 |             | 446  | membrane protein TctB                      | No hits                                   |
| BDGL003581 |             | 1499 | protein of unknown function                | No hits                                   |
| BDGL003582 | <i>abrB</i> | 1046 | Putative monooxygenase                     | ammonia<br><i>E. coli</i> K12 (24%)       |
| BDGL003592 |             | 233  | hypothetical protein                       | No hits                                   |
| BDGL003593 |             | 158  | hypothetical protein                       | No hits                                   |

26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37

38 **Fig. S1**

39

40

41

42

43

44

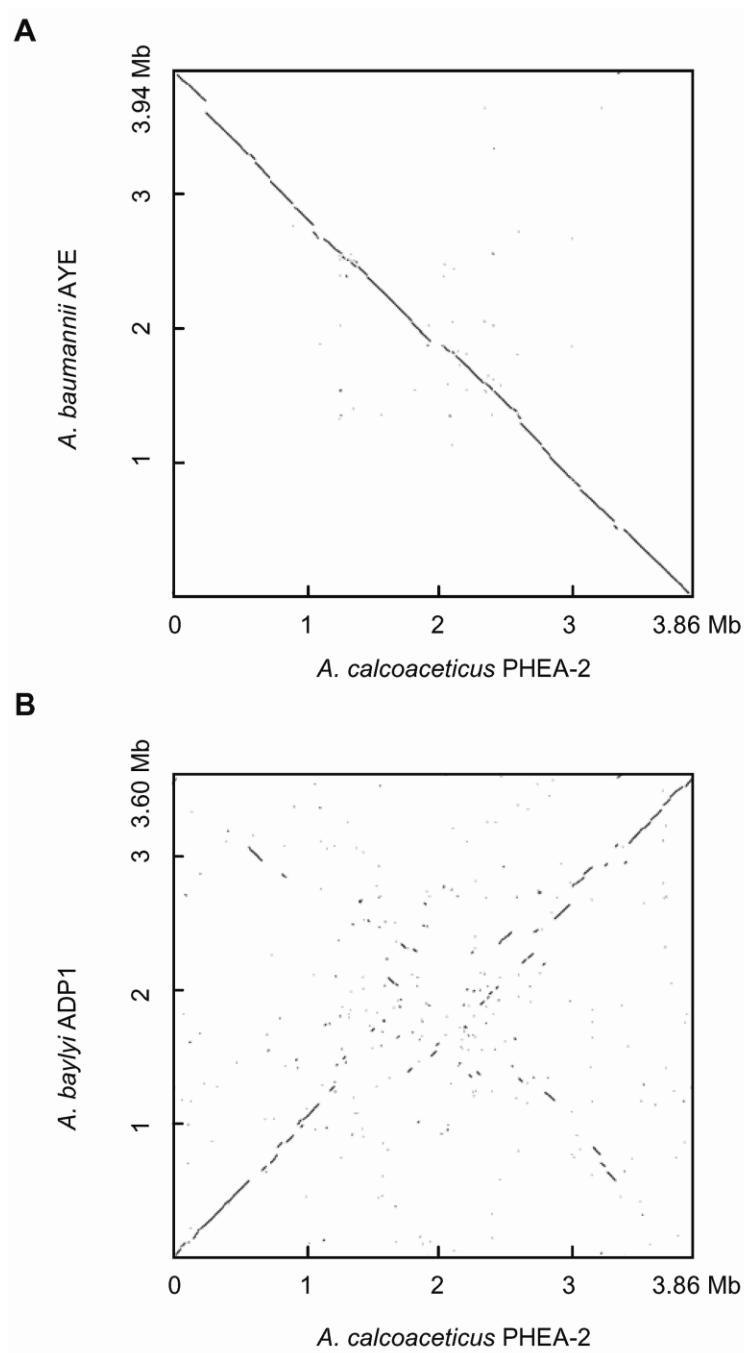
45

46

47

48

49


50

51

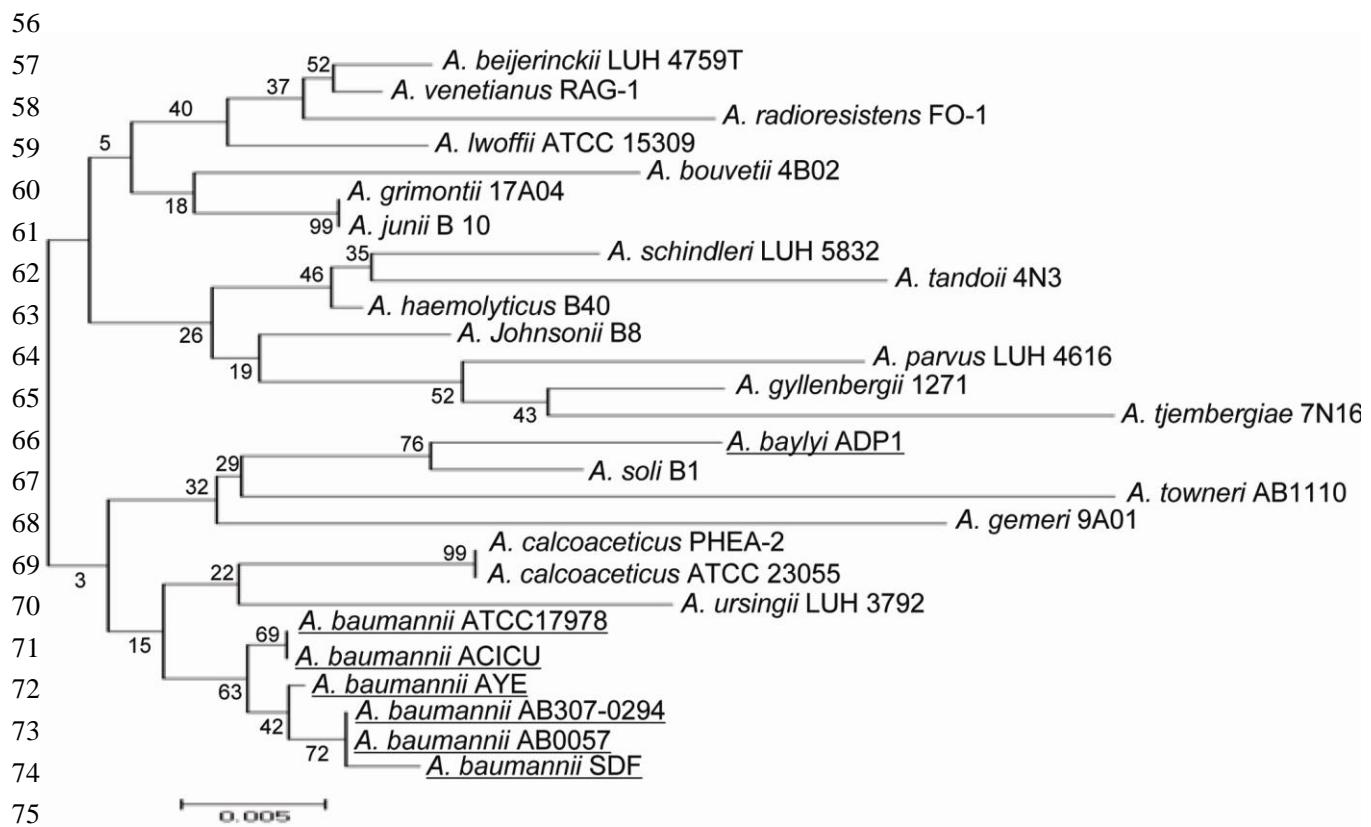
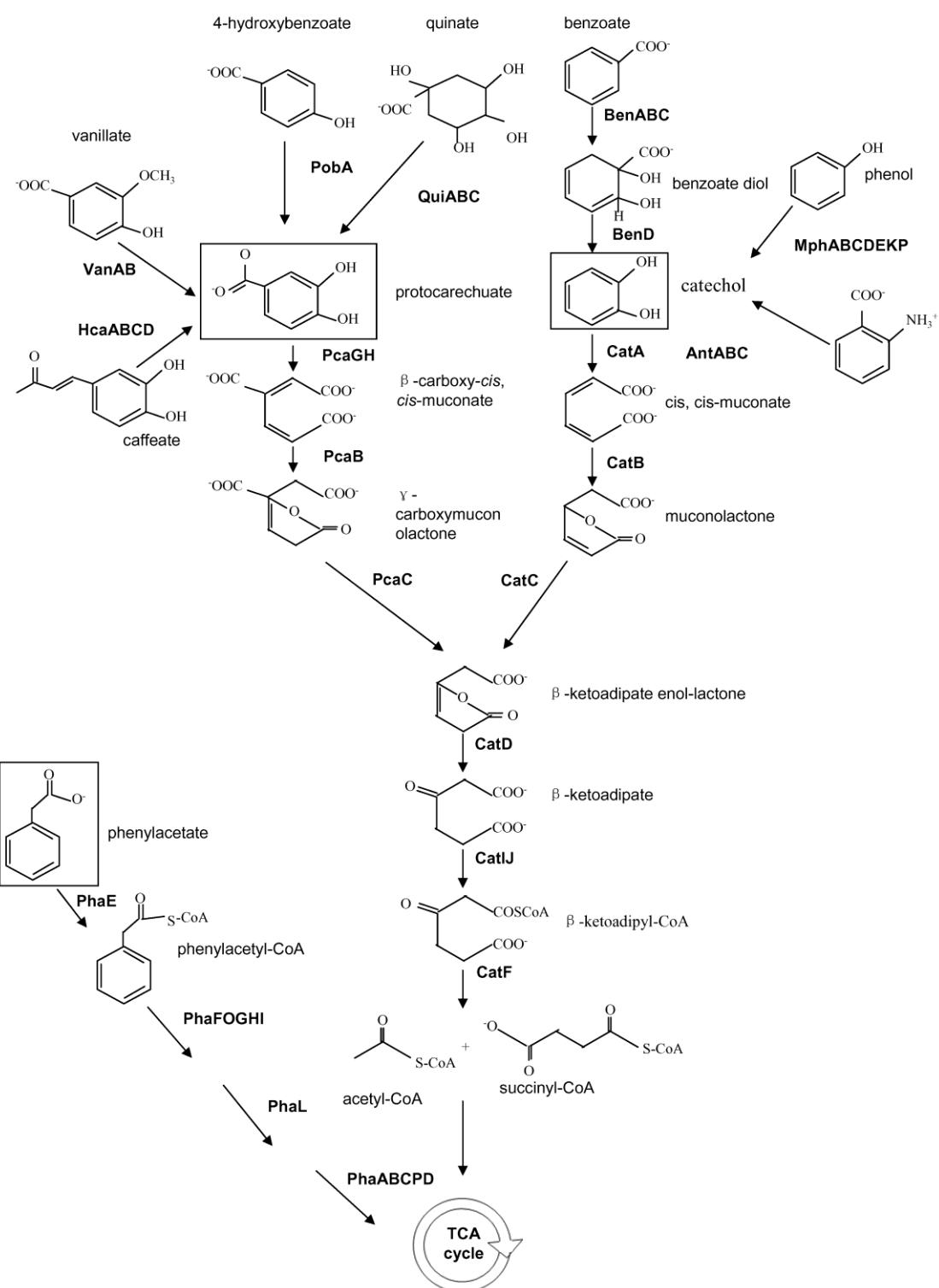
52

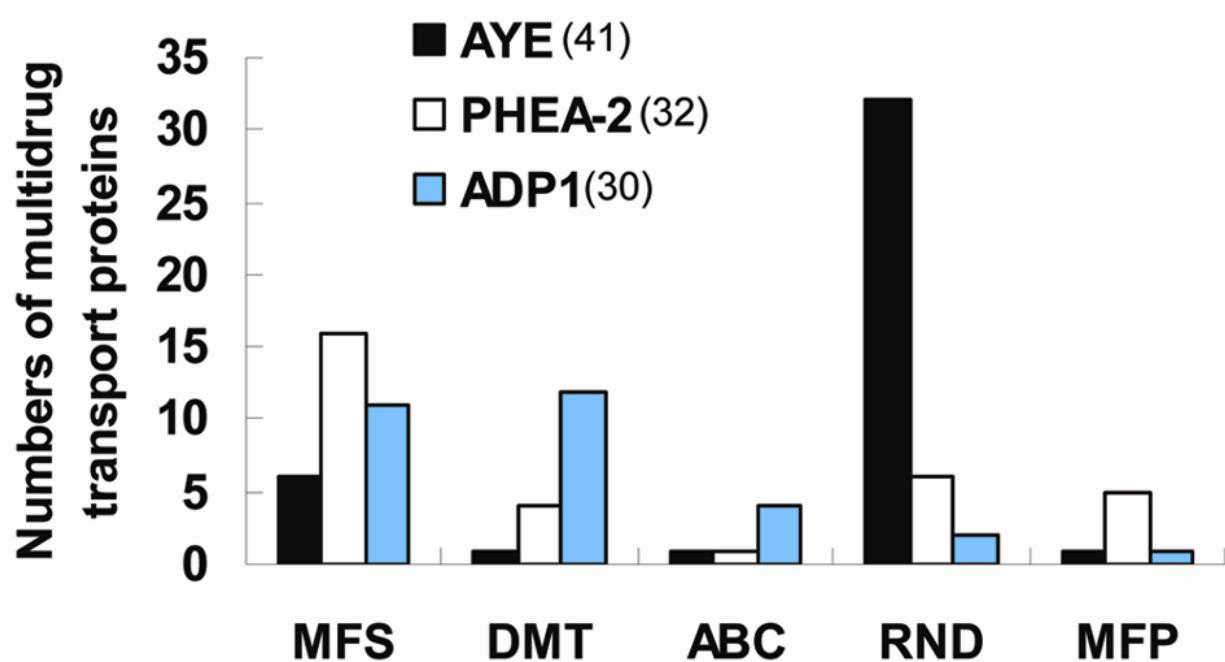
53

54



55 **Fig. S2**



Fig. S3



112 **Fig. S4**

113

114



115

116

117